您的位置 : 首页 > 英文著作
Origin of Species
chapter xiv. mutual affinities of organic beings: morphology -- embryology -- rudimentary organs   On the nature of the affinities connecting organic beings
Charles Darwin
下载:Origin of Species.txt
本书全文检索:
       As the modified descendants of dominant species, belonging to the larger genera, tend to inherit the advantages which made the groups to which they belong large and their parents dominant, they are almost sure to spread widely, and to seize on more and more places in the economy of nature. The larger and more dominant groups within each class thus tend to go on increasing in size, and they consequently supplant many smaller and feebler groups. Thus, we can account for the fact that all organisms, recent and extinct, are included under a few great orders and under still fewer classes. As showing how few the higher groups are in number, and how widely they are spread throughout the world, the fact is striking that the discovery of Australia has not added an insect belonging to a new class, and that in the vegetable kingdom, as I learn from Dr. Hooker, it has added only two or three families of small size.
       In the chapter on geological succession I attempted to show, on the principle of each group having generally diverged much in character during the long-continued process of modification, how it is that the more ancient forms of life often present characters in some degree intermediate between existing groups. As some few of the old and intermediate forms having transmitted to the present day descendants but little modified, these constitute our so-called osculant or aberrant groups. The more aberrant any form is, the greater must be the number of connecting forms which have been exterminated and utterly lost. And we have evidence of aberrant groups having suffered severely from extinction, for they are almost always represented by extremely few species; and such species as do occur are generally very distinct from each other, which again implies extinction. The genera Ornithorhynchus and Lepidosiren, for example, would not have been less aberrant had each been represented by a dozen species, instead of as at present by a single one, or by two or three. We can, I think, account for this fact only by looking at aberrant groups as forms which have been conquered by more successful competitors, with a few members still preserved under unusually favourable conditions.
       Mr. Waterhouse has remarked that when a member belonging to one group of animals exhibits an affinity to a quite distinct group, this affinity in most cases is general and not special: thus, according to Mr. Waterhouse, of all Rodents, the bizcacha is most nearly related to Marsupials; but in the points in which it approaches this order, its relations are general, that is, not to any one Marsupial species more than to another. As these points of affinity are believed to be real and not merely adaptive, they must be due in accordance with our view to inheritance from a common progenitor. Therefore, we must suppose either that all Rodents, including the bizcacha, branched off from some ancient Marsupial, which will naturally have been more or less intermediate in character with respect to all existing Marsupials; or that both Rodents and Marsupials branched off from a common progenitor, and that both groups have since undergone much modification in divergent directions. On either view we must suppose that the bizcacha has retained, by inheritance, more of the character of its ancient progenitor than have other Rodents; and therefore it will not be specially related to any one existing Marsupial, but indirectly to all or nearly all Marsupials, from having partially retained the character of their common progenitor, or of some early member of the group. On the other hand, of all Marsupials, as Mr. Waterhouse has remarked, the Phascolomys resembles most nearly, not any one species, but the general order of Rodents. In this case, however, it may be strongly suspected that the resemblance is only analogical, owing to the Phascolomys having become adapted to habits like those of a Rodent. The elder De Candolle has made nearly similar observations on the general nature of the affinities of distinct families of plants.
       On the principle of the multiplication and gradual divergence in character of the species descended from a common progenitor, together with their retention by inheritance of some characters in common, we can understand the excessively complex and radiating affinities by which all the members of the same family or higher group are connected together. For the common progenitor of a whole family, now broken up by extinction into distinct groups and subgroups, will have transmitted some of its characters, modified in various ways and degrees, to all the species; and they will consequently be related to each other by circuitous lines of affinity of various lengths (as may be seen in the diagram so often referred to), mounting up through many predecessors. As it is difficult to show the blood-relationship between the numerous kindred of any ancient and noble family, even by the aid of a genealogical tree, and almost impossible to do so without this aid, we can understand the extraordinary difficulty which naturalists have experienced in describing, without the aid of a diagram, the various affinities which they perceive between the many living and extinct members of the same great natural class.
       Extinction, as we have seen in the fourth chapter, has played an important part in defining and widening the intervals between the several groups in each class. We may thus account for the distinctness of whole classes from each other--for instance, of birds from all other vertebrate animals--by the belief that many ancient forms of life have been utterly lost, through which the early progenitors of birds were formerly connected with the early progenitors of the other and at that time less differentiated vertebrate classes. There has been much less extinction of the forms of life which once connected fishes with Batrachians. There has been still less within some whole classes, for instance the Crustacea, for here the most wonderfully diverse forms are still linked together by a long and only partially broken chain of affinities. Extinction has only defined the groups: it has by no means made them; for if every form which has ever lived on this earth were suddenly to reappear, though it would be quite impossible to give definitions by which each group could be distinguished, still a natural classification, or at least a natural arrangement, would be possible. We shall see this by turning to the diagram: the letters, A to L, may represent eleven Silurian genera, some of which have produced large groups of modified descendants, with every link in each branch and sub-branch still alive; and the links not greater than those between existing varieties. In this case it would be quite impossible to give definitions by which the several members of the several groups could be distinguished from their more immediate parents and descendants. Yet the arrangement in the diagram would still hold good and would be natural; for, on the principle of inheritance, all the forms descended, for instance from A, would have something in common. In a tree we can distinguish this or that branch, though at the actual fork the two unite and blend together. We could not, as I have said, define the several groups; but we could pick out types, or forms, representing most of the characters of each group, whether large or small, and thus give a general idea of the value of the differences between them. This is what we should be driven to, if we were ever to succeed in collecting all the forms in any one class which have lived throughout all time and space. Assuredly we shall never succeed in making so perfect a collection: nevertheless, in certain classes, we are tending toward this end; and Milne Edwards has lately insisted, in an able paper, on the high importance of looking to types, whether or not we can separate and define the groups to which such types belong.
       Finally, we have seen that natural selection, which follows from the struggle for existence, and which almost inevitably leads to extinction and divergence of character in the descendants from any one parent-species, explains that great and universal feature in the affinities of all organic beings, namely, their subordination in group under group. We use the element of descent in classing the individuals of both sexes and of all ages under one species, although they may have but few characters in common; we use descent in classing acknowledged varieties, however different they may be from their parents; and I believe that this element of descent is the hidden bond of connexion which naturalists have sought under the term of the Natural System. On this idea of the natural system being, in so far as it has been perfected, genealogical in its arrangement, with the grades of difference expressed by the terms genera, families, orders, etc., we can understand the rules which we are compelled to follow in our classification. We can understand why we value certain resemblances far more than others; why we use rudimentary and useless organs, or others of trifling physiological importance; why, in finding the relations between one group and another, we summarily reject analogical or adaptive characters, and yet use these same characters within the limits of the same group. We can clearly see how it is that all living and extinct forms can be grouped together within a few great classes; and how the several members of each class are connected together by the most complex and radiating lines of affinities. We shall never, probably, disentangle the inextricable web of the affinities between the members of any one class; but when we have a distinct object in view, and do not look to some unknown plan of creation, we may hope to make sure but slow progress.
       Professor Haeckel in his "Generelle Morphologie" and in another works, has recently brought his great knowledge and abilities to bear on what he calls phylogeny, or the lines of descent of all organic beings. In drawing up the several series he trusts chiefly to embryological characters, but receives aid from homologous and rudimentary organs, as well as from the successive periods at which the various forms of life are believed to have first appeared in our geological formations. He has thus boldly made a great beginning, and shows us how classification will in the future be treated.
用户中心

本站图书检索

本书目录

Introduction
chapter i. variation under domestication
   Causes of Variability
   Effects of Habit and the use or disuse of Parts; Correlated Variation; Inheritance
   Character of Domestic Varieties; Difficulty of distinguishing between Varieties and Species; Origin of Domestic Varieties from one or more Species
   Breeds of the Domestic Pigeon, Their Differences and Origin
   Principles of Selection, anciently followed, their Effects
   Unconscious Selection
   Circumstances favourable to Man's power of Selection
chapter ii. variation under nature
   Variability
   Individual Differences
   Doubtful species
   Wide ranging, much diffused, and common species, vary most
   Species of the larger genera in each country vary more frequently than the species of the smaller genera
   Many of the species of the larger genera resemble varieties in being very closely, but unequally, related to each other, and in having restricted ranges.
   Summary
chapter iii. struggle for existence
   Its bearing on natural selection
   The term, Struggle for Existence, used in a large sense
   Geometrical ratio of increase
   Nature of the checks to increase
   Complex relations of all animals and plants to each other in the struggle for existence
   Struggle for life most severe between individuals and varieties of the same species
chapter iv. natural selection; or the survival of the fittest
   Natural Selection
   Sexual Selection
   Illustrations of the action of Natural Selection, or the survival of the fittest
   On the Intercrossing of Individuals
   Circumstances favourable for the production of new forms through Natural Selection
   Extinction caused by Natural Selection
   Divergence of Character
   The Probable Effects of the Action of Natural Selection through Divergence of Character and Extinction, on the Descendants of a Common Ancestor
   On the degree to which Organisation tends to advance
   Convergence of character
   Summary
chapter v. laws of variation
   Effects of changed conditions
   Effects of the increased use and disuse of parts, as controlled by Natural Selection
   Acclimatisation
   Correlated variation
   Compensation and economy of growth
   Multiple, rudimentary, and lowly organised structures are variable
   A part developed in any species in an extraordinary degree or manner, in comparison with the same part in allied species, tends to be highly variable
   Specific characters more variable than generic characters
   Secondary sexual characters variable
   Distinct species present analogous variations, so that a variety of one species often assumes a character proper to an allied species, or reverts to some of the characters of an early progenitor
   Summary
chapter vi. difficulties of the theory
   Difficulties of the theory of descent with modification
   Absence or rarity of transitional varieties
   On the origin and transition of organic beings with peculiar habits and structure
   Organs of extreme perfection and complication
   Modes of transition
   Special difficulties of the theory of Natural Selection
   Organs of little apparent importance, as affected by Natural Selection
   Utilitarian doctrine, how far true: Beauty, how acquired
   Summary
chapter vii
   Miscellaneous Objections to the Theory of Natural Selection
chapter viii. instinct
   Instincts comparable with habits, but different in their origin
   Inherited changes of habit or instinct in domesticated animals
   Special instincts; Instincts of the cuckoo
   Slave-making instinct
   Cell-making instinct of the hive-bee
   Objections to the theory of natural selection as applied to instincts: neuter and sterile insects
   Summary
chapter ix. hybridism
   Distinction between the sterility of first crosses and of hybrids
   Degrees of sterility
   Laws governing the sterility of first crosses and of hybrids
   Origin and causes of the sterility of first crosses and of hybrids
   Reciprocal dimorphism and trimorphism
   Fertility of varieties when crossed and of their mongrel offspring not universal
   Hybrids and mongrels compared independently of their fertility
   Summary of Chapter
chapter x. on the imperfection of the geological record
   On the absence of intermediate varieties at the present day
   On the lapse of time, as inferred from the rate of denudation and of deposition
   On the poorness of our palaeontological collections
   On the absence of numerous intermediate varieties in any single formation
   On the sudden appearance of whole groups of allied species
   On the sudden appearance of groups of allied species in the lowest known fossiliferous strata
chapter xi. on the geological succession of organic beings
   On the slow and successive appearance of new species
   On extinction
   On the forms of life changing almost simultaneously throughout the world
   On the affinities of extinct species to each other and to living species
   On the state of development of ancient compared with living forms
   On the succession of the same types within the same areas, during the later Tertiary Periods.
   Summary of preceding and present chapter
chapter xii. geographical distribution
   Present distribution cannot be accounted for by differences in physical conditions
   Single centres of supposed creation
   Means of dispersal
   Dispersal during the Glacial period
   Alternate Glacial periods in the north and south
chapter xiii. geographical distribution -- continued
   Distribution of fresh-water productions
   On the inhabitants of oceanic islands
   Absence of Batrachians and terrestrial Mammals on oceanic islands
   On the relation of the inhabitants of islands to those of the nearest mainland
   Summary of the last and present chapter
chapter xiv. mutual affinities of organic beings: morphology -- embryology -- rudimentary organs
   Classification
   Analogical resemblances
   On the nature of the affinities connecting organic beings
   Morphology
   Development and embryology
   Rudimentary, atrophied, and aborted organs
   Summary
chapter xv
   Recapitulation and Conclusion
Glossary of Scientific Terms