您的位置 : 首页 > 英文著作
Origin of Species
chapter xiii. geographical distribution -- continued   On the inhabitants of oceanic islands
Charles Darwin
下载:Origin of Species.txt
本书全文检索:
       We now come to the last of the three classes of facts, which I have selected as presenting the greatest amount of difficulty with respect to distribution, on the view that not only all the individuals of the same species have migrated from some one area, but that allied species, although now inhabiting the most distant points, have proceeded from a single area, the birthplace of their early progenitors. I have already given my reasons for disbelieving in continental extensions within the period of existing species on so enormous a scale that all the many islands of the several oceans were thus stocked with their present terrestrial inhabitants. This view removes many difficulties, but it does not accord with all the facts in regard to the productions of islands. In the following remarks I shall not confine myself to the mere question of dispersal, but shall consider some other cases bearing on the truth of the two theories of independent creation and of descent with modification.
       The species of all kinds which inhabit oceanic islands are few in number compared with those on equal continental areas: Alph. de Candolle admits this for plants, and Wollaston for insects. New Zealand, for instance, with its lofty mountains and diversified stations, extending over 780 miles of latitude, together with the outlying islands of Auckland, Campbell and Chatham, contain altogether only 960 kinds of flowering plants; if we compare this moderate number with the species which swarm over equal areas in Southwestern Australia or at the Cape of Good Hope, we must admit that some cause, independently of different physical conditions, has given rise to so great a difference in number. Even the uniform county of Cambridge has 847 plants, and the little island of Anglesea 764, but a few ferns and a few introduced plants are included in these numbers, and the comparison in some other respects is not quite fair. We have evidence that the barren island of Ascension aboriginally possessed less than half-a-dozen flowering plants; yet many species have now become naturalised on it, as they have in New Zealand and on every other oceanic island which can be named. In St. Helena there is reason to believe that the naturalised plants and animals have nearly or quite exterminated many native productions. He who admits the doctrine of the creation of each separate species, will have to admit that a sufficient number of the best adapted plants and animals were not created for oceanic islands; for man has unintentionally stocked them far more fully and perfectly than did nature.
       Although in oceanic islands the species are few in number, the proportion of endemic kinds (i.e. those found nowhere else in the world) is often extremely large. If we compare, for instance, the number of endemic land-shells in Madeira, or of endemic birds in the Galapagos Archipelago, with the number found on any continent, and then compare the area of the island with that of the continent, we shall see that this is true. This fact might have been theoretically expected, for, as already explained, species occasionally arriving, after long intervals of time in the new and isolated district, and having to compete with new associates, would be eminently liable to modification, and would often produce groups of modified descendants. But it by no means follows that, because in an island nearly all the species of one class are peculiar, those of another class, or of another section of the same class, are peculiar; and this difference seems to depend partly on the species which are not modified having immigrated in a body, so that their mutual relations have not been much disturbed; and partly on the frequent arrival of unmodified immigrants from the mother-country, with which the insular forms have intercrossed. It should be borne in mind that the offspring of such crosses would certainly gain in vigour; so that even an occasional cross would produce more effect than might have been anticipated. I will give a few illustrations of the foregoing remarks: in the Galapagos Islands there are twenty-six land birds; of these twenty-one (or perhaps twenty-three) are peculiar; whereas of the eleven marine birds only two are peculiar; and it is obvious that marine birds could arrive at these islands much more easily and frequently than land-birds. Bermuda, on the other hand, which lies at about the same distance from North America as the Galapagos Islands do from South America, and which has a very peculiar soil, does not possess a single endemic land bird; and we know from Mr. J.M. Jones's admirable account of Bermuda, that very many North American birds occasionally or even frequently visit this island. Almost every year, as I am informed by Mr. E.V. Harcourt, many European and African birds are blown to Madeira; this island is inhabited by ninety-nine kinds, of which one alone is peculiar, though very closely related to a European form; and three or four other species are confined to this island and to the Canaries. So that the islands of Bermuda and Madeira have been stocked from the neighbouring continents with birds, which for long ages have there struggled together, and have become mutually co-adapted. Hence, when settled in their new homes, each kind will have been kept by the others to its proper place and habits, and will consequently have been but little liable to modification. Any tendency to modification will also have been checked by intercrossing with the unmodified immigrants, often arriving from the mother-country. Madeira again is inhabited by a wonderful number of peculiar land-shells, whereas not one species of sea-shell is peculiar to its shores: now, though we do not know how sea-shells are dispersed, yet we can see that their eggs or larvae, perhaps attached to seaweed or floating timber, or to the feet of wading birds, might be transported across three or four hundred miles of open sea far more easily than land-shells. The different orders of insects inhabiting Madeira present nearly parallel cases.
       Oceanic islands are sometimes deficient in animals of certain whole classes, and their places are occupied by other classes; thus in the Galapagos Islands reptiles, and in New Zealand gigantic wingless birds, take, or recently took, the place of mammals. Although New Zealand is here spoken of as an oceanic island, it is in some degree doubtful whether it should be so ranked; it is of large size, and is not separated from Australia by a profoundly deep sea; from its geological character and the direction of its mountain ranges, the Rev. W.B. Clarke has lately maintained that this island, as well as New Caledonia, should be considered as appurtenances of Australia. Turning to plants, Dr. Hooker has shown that in the Galapagos Islands the proportional numbers of the different orders are very different from what they are elsewhere. All such differences in number, and the absence of certain whole groups of animals and plants, are generally accounted for by supposed differences in the physical conditions of the islands; but this explanation is not a little doubtful. Facility of immigration seems to have been fully as important as the nature of the conditions.
       Many remarkable little facts could be given with respect to the inhabitants of oceanic islands. For instance, in certain islands not tenanted by a single mammal, some of the endemic plants have beautifully hooked seeds; yet few relations are more manifest than that hooks serve for the transportal of seeds in the wool or fur of quadrupeds. But a hooked seed might be carried to an island by other means; and the plant then becoming modified would form an endemic species, still retaining its hooks, which would form a useless appendage, like the shrivelled wings under the soldered wing-covers of many insular beetles. Again, islands often possess trees or bushes belonging to orders which elsewhere include only herbaceous species; now trees, as Alph. de Candolle has shown, generally have, whatever the cause may be, confined ranges. Hence trees would be little likely to reach distant oceanic islands; and an herbaceous plant, which had no chance of successfully competing with the many fully developed trees growing on a continent, might, when established on an island, gain an advantage over other herbaceous plants by growing taller and taller and overtopping them. In this case, natural selection would tend to add to the stature of the plant, to whatever order it belonged, and thus first convert it into a bush and then into a tree.
用户中心

本站图书检索

本书目录

Introduction
chapter i. variation under domestication
   Causes of Variability
   Effects of Habit and the use or disuse of Parts; Correlated Variation; Inheritance
   Character of Domestic Varieties; Difficulty of distinguishing between Varieties and Species; Origin of Domestic Varieties from one or more Species
   Breeds of the Domestic Pigeon, Their Differences and Origin
   Principles of Selection, anciently followed, their Effects
   Unconscious Selection
   Circumstances favourable to Man's power of Selection
chapter ii. variation under nature
   Variability
   Individual Differences
   Doubtful species
   Wide ranging, much diffused, and common species, vary most
   Species of the larger genera in each country vary more frequently than the species of the smaller genera
   Many of the species of the larger genera resemble varieties in being very closely, but unequally, related to each other, and in having restricted ranges.
   Summary
chapter iii. struggle for existence
   Its bearing on natural selection
   The term, Struggle for Existence, used in a large sense
   Geometrical ratio of increase
   Nature of the checks to increase
   Complex relations of all animals and plants to each other in the struggle for existence
   Struggle for life most severe between individuals and varieties of the same species
chapter iv. natural selection; or the survival of the fittest
   Natural Selection
   Sexual Selection
   Illustrations of the action of Natural Selection, or the survival of the fittest
   On the Intercrossing of Individuals
   Circumstances favourable for the production of new forms through Natural Selection
   Extinction caused by Natural Selection
   Divergence of Character
   The Probable Effects of the Action of Natural Selection through Divergence of Character and Extinction, on the Descendants of a Common Ancestor
   On the degree to which Organisation tends to advance
   Convergence of character
   Summary
chapter v. laws of variation
   Effects of changed conditions
   Effects of the increased use and disuse of parts, as controlled by Natural Selection
   Acclimatisation
   Correlated variation
   Compensation and economy of growth
   Multiple, rudimentary, and lowly organised structures are variable
   A part developed in any species in an extraordinary degree or manner, in comparison with the same part in allied species, tends to be highly variable
   Specific characters more variable than generic characters
   Secondary sexual characters variable
   Distinct species present analogous variations, so that a variety of one species often assumes a character proper to an allied species, or reverts to some of the characters of an early progenitor
   Summary
chapter vi. difficulties of the theory
   Difficulties of the theory of descent with modification
   Absence or rarity of transitional varieties
   On the origin and transition of organic beings with peculiar habits and structure
   Organs of extreme perfection and complication
   Modes of transition
   Special difficulties of the theory of Natural Selection
   Organs of little apparent importance, as affected by Natural Selection
   Utilitarian doctrine, how far true: Beauty, how acquired
   Summary
chapter vii
   Miscellaneous Objections to the Theory of Natural Selection
chapter viii. instinct
   Instincts comparable with habits, but different in their origin
   Inherited changes of habit or instinct in domesticated animals
   Special instincts; Instincts of the cuckoo
   Slave-making instinct
   Cell-making instinct of the hive-bee
   Objections to the theory of natural selection as applied to instincts: neuter and sterile insects
   Summary
chapter ix. hybridism
   Distinction between the sterility of first crosses and of hybrids
   Degrees of sterility
   Laws governing the sterility of first crosses and of hybrids
   Origin and causes of the sterility of first crosses and of hybrids
   Reciprocal dimorphism and trimorphism
   Fertility of varieties when crossed and of their mongrel offspring not universal
   Hybrids and mongrels compared independently of their fertility
   Summary of Chapter
chapter x. on the imperfection of the geological record
   On the absence of intermediate varieties at the present day
   On the lapse of time, as inferred from the rate of denudation and of deposition
   On the poorness of our palaeontological collections
   On the absence of numerous intermediate varieties in any single formation
   On the sudden appearance of whole groups of allied species
   On the sudden appearance of groups of allied species in the lowest known fossiliferous strata
chapter xi. on the geological succession of organic beings
   On the slow and successive appearance of new species
   On extinction
   On the forms of life changing almost simultaneously throughout the world
   On the affinities of extinct species to each other and to living species
   On the state of development of ancient compared with living forms
   On the succession of the same types within the same areas, during the later Tertiary Periods.
   Summary of preceding and present chapter
chapter xii. geographical distribution
   Present distribution cannot be accounted for by differences in physical conditions
   Single centres of supposed creation
   Means of dispersal
   Dispersal during the Glacial period
   Alternate Glacial periods in the north and south
chapter xiii. geographical distribution -- continued
   Distribution of fresh-water productions
   On the inhabitants of oceanic islands
   Absence of Batrachians and terrestrial Mammals on oceanic islands
   On the relation of the inhabitants of islands to those of the nearest mainland
   Summary of the last and present chapter
chapter xiv. mutual affinities of organic beings: morphology -- embryology -- rudimentary organs
   Classification
   Analogical resemblances
   On the nature of the affinities connecting organic beings
   Morphology
   Development and embryology
   Rudimentary, atrophied, and aborted organs
   Summary
chapter xv
   Recapitulation and Conclusion
Glossary of Scientific Terms