您的位置 : 首页 > 英文著作
Origin of Species
chapter ix. hybridism   Fertility of varieties when crossed and of their mongrel offspring not universal
Charles Darwin
下载:Origin of Species.txt
本书全文检索:
       It may be urged as an overwhelming argument that there must be some essential distinction between species and varieties inasmuch as the latter, however much they may differ from each other in external appearance, cross with perfect facility, and yield perfectly fertile offspring. With some exceptions, presently to be given, I fully admit that this is the rule. But the subject is surrounded by difficulties, for, looking to varieties produced under nature, if two forms hitherto reputed to be varieties be found in any degree sterile together, they are at once ranked by most naturalists as species. For instance, the blue and red pimpernel, which are considered by most botanists as varieties, are said by Gartner to be quite sterile when crossed, and he consequently ranks them as undoubted species. If we thus argue in a circle, the fertility of all varieties produced under nature will assuredly have to be granted.
       If we turn to varieties, produced, or supposed to have been produced, under domestication, we are still involved in some doubt. For when it is stated, for instance, that certain South American indigenous domestic dogs do not readily unite with European dogs, the explanation which will occur to everyone, and probably the true one, is that they are descended from aboriginally distinct species. Nevertheless the perfect fertility of so many domestic races, differing widely from each other in appearance, for instance, those of the pigeon, or of the cabbage, is a remarkable fact; more especially when we reflect how many species there are, which, though resembling each other most closely, are utterly sterile when intercrossed. Several considerations, however, render the fertility of domestic varieties less remarkable. In the first place, it may be observed that the amount of external difference between two species is no sure guide to their degree of mutual sterility, so that similar differences in the case of varieties would be no sure guide. It is certain that with species the cause lies exclusively in differences in their sexual constitution. Now the varying conditions to which domesticated animals and cultivated plants have been subjected, have had so little tendency towards modifying the reproductive system in a manner leading to mutual sterility, that we have good grounds for admitting the directly opposite doctrine of Pallas, namely, that such conditions generally eliminate this tendency; so that the domesticated descendants of species, which in their natural state probably would have been in some degree sterile when crossed, become perfectly fertile together. With plants, so far is cultivation from giving a tendency towards sterility between distinct species, that in several well- authenticated cases already alluded to, certain plants have been affected in an opposite manner, for they have become self-impotent, while still retaining the capacity of fertilising, and being fertilised by, other species. If the Pallasian doctrine of the elimination of sterility through long-continued domestication be admitted, and it can hardly be rejected, it becomes in the highest degree improbable that similar conditions long- continued should likewise induce this tendency; though in certain cases, with species having a peculiar constitution, sterility might occasionally be thus caused. Thus, as I believe, we can understand why, with domesticated animals, varieties have not been produced which are mutually sterile; and why with plants only a few such cases, immediately to be given, have been observed.
       The real difficulty in our present subject is not, as it appears to me, why domestic varieties have not become mutually infertile when crossed, but why this has so generally occurred with natural varieties, as soon as they have been permanently modified in a sufficient degree to take rank as species. We are far from precisely knowing the cause; nor is this surprising, seeing how profoundly ignorant we are in regard to the normal and abnormal action of the reproductive system. But we can see that species, owing to their struggle for existence with numerous competitors, will have been exposed during long periods of time to more uniform conditions, than have domestic varieties; and this may well make a wide difference in the result. For we know how commonly wild animals and plants, when taken from their natural conditions and subjected to captivity, are rendered sterile; and the reproductive functions of organic beings which have always lived under natural conditions would probably in like manner be eminently sensitive to the influence of an unnatural cross. Domesticated productions, on the other hand, which, as shown by the mere fact of their domestication, were not originally highly sensitive to changes in their conditions of life, and which can now generally resist with undiminished fertility repeated changes of conditions, might be expected to produce varieties, which would be little liable to have their reproductive powers injuriously affected by the act of crossing with other varieties which had originated in a like manner.
       I have as yet spoken as if the varieties of the same species were invariably fertile when intercrossed. But it is impossible to resist the evidence of the existence of a certain amount of sterility in the few following cases, which I will briefly abstract. The evidence is at least as good as that from which we believe in the sterility of a multitude of species. The evidence is also derived from hostile witnesses, who in all other cases consider fertility and sterility as safe criterions of specific distinction. Gartner kept, during several years, a dwarf kind of maize with yellow seeds, and a tall variety with red seeds growing near each other in his garden; and although these plants have separated sexes, they never naturally crossed. He then fertilised thirteen flowers of the one kind with pollen of the other; but only a single head produced any seed, and this one head produced only five grains. Manipulation in this case could not have been injurious, as the plants have separated sexes. No one, I believe, has suspected that these varieties of maize are distinct species; and it is important to notice that the hybrid plants thus raised were themselves perfectly fertile; so that even Gartner did not venture to consider the two varieties as specifically distinct.
       Girou de Buzareingues crossed three varieties of gourd, which like the maize has separated sexes, and he asserts that their mutual fertilisation is by so much the less easy as their differences are greater. How far these experiments may be trusted, I know not; but the forms experimented on are ranked by Sagaret, who mainly founds his classification by the test of infertility, as varieties, and Naudin has come to the same conclusion.
       The following case is far more remarkable, and seems at first incredible; but it is the result of an astonishing number of experiments made during many years on nine species of Verbascum, by so good an observer and so hostile a witness as Gartner: namely, that the yellow and white varieties when crossed produce less seed than the similarly coloured varieties of the same species. Moreover, he asserts that, when yellow and white varieties of one species are crossed with yellow and white varieties of a distinct species, more seed is produced by the crosses between the similarly coloured flowers, than between those which are differently coloured. Mr. Scott also has experimented on the species and varieties of Verbascum; and although unable to confirm Gartner's results on the crossing of the distinct species, he finds that the dissimilarly coloured varieties of the same species yield fewer seeds, in the proportion of eighty-six to 100, than the similarly coloured varieties. Yet these varieties differ in no respect, except in the colour of their flowers; and one variety can sometimes be raised from the seed of another.
       Kolreuter, whose accuracy has been confirmed by every subsequent observer, has proved the remarkable fact that one particular variety of the common tobacco was more fertile than the other varieties, when crossed with a widely distinct species. He experimented on five forms which are commonly reputed to be varieties, and which he tested by the severest trial, namely, by reciprocal crosses, and he found their mongrel offspring perfectly fertile. But one of these five varieties, when used either as the father or mother, and crossed with the Nicotiana glutinosa, always yielded hybrids not so sterile as those which were produced from the four other varieties when crossed with N. glutinosa. Hence the reproductive system of this one variety must have been in some manner and in some degree modified.
       >From these facts it can no longer be maintained that varieties when crossed are invariably quite fertile. From the great difficulty of ascertaining the infertility of varieties in a state of nature, for a supposed variety, if proved to be infertile in any degree, would almost universally be ranked as a species; from man attending only to external characters in his domestic varieties, and from such varieties not having been exposed for very long periods to uniform conditions of life; from these several considerations we may conclude that fertility does not constitute a fundamental distinction between varieties and species when crossed. The general sterility of crossed species may safely be looked at, not as a special acquirement or endowment, but as incidental on changes of an unknown nature in their sexual elements.
用户中心

本站图书检索

本书目录

Introduction
chapter i. variation under domestication
   Causes of Variability
   Effects of Habit and the use or disuse of Parts; Correlated Variation; Inheritance
   Character of Domestic Varieties; Difficulty of distinguishing between Varieties and Species; Origin of Domestic Varieties from one or more Species
   Breeds of the Domestic Pigeon, Their Differences and Origin
   Principles of Selection, anciently followed, their Effects
   Unconscious Selection
   Circumstances favourable to Man's power of Selection
chapter ii. variation under nature
   Variability
   Individual Differences
   Doubtful species
   Wide ranging, much diffused, and common species, vary most
   Species of the larger genera in each country vary more frequently than the species of the smaller genera
   Many of the species of the larger genera resemble varieties in being very closely, but unequally, related to each other, and in having restricted ranges.
   Summary
chapter iii. struggle for existence
   Its bearing on natural selection
   The term, Struggle for Existence, used in a large sense
   Geometrical ratio of increase
   Nature of the checks to increase
   Complex relations of all animals and plants to each other in the struggle for existence
   Struggle for life most severe between individuals and varieties of the same species
chapter iv. natural selection; or the survival of the fittest
   Natural Selection
   Sexual Selection
   Illustrations of the action of Natural Selection, or the survival of the fittest
   On the Intercrossing of Individuals
   Circumstances favourable for the production of new forms through Natural Selection
   Extinction caused by Natural Selection
   Divergence of Character
   The Probable Effects of the Action of Natural Selection through Divergence of Character and Extinction, on the Descendants of a Common Ancestor
   On the degree to which Organisation tends to advance
   Convergence of character
   Summary
chapter v. laws of variation
   Effects of changed conditions
   Effects of the increased use and disuse of parts, as controlled by Natural Selection
   Acclimatisation
   Correlated variation
   Compensation and economy of growth
   Multiple, rudimentary, and lowly organised structures are variable
   A part developed in any species in an extraordinary degree or manner, in comparison with the same part in allied species, tends to be highly variable
   Specific characters more variable than generic characters
   Secondary sexual characters variable
   Distinct species present analogous variations, so that a variety of one species often assumes a character proper to an allied species, or reverts to some of the characters of an early progenitor
   Summary
chapter vi. difficulties of the theory
   Difficulties of the theory of descent with modification
   Absence or rarity of transitional varieties
   On the origin and transition of organic beings with peculiar habits and structure
   Organs of extreme perfection and complication
   Modes of transition
   Special difficulties of the theory of Natural Selection
   Organs of little apparent importance, as affected by Natural Selection
   Utilitarian doctrine, how far true: Beauty, how acquired
   Summary
chapter vii
   Miscellaneous Objections to the Theory of Natural Selection
chapter viii. instinct
   Instincts comparable with habits, but different in their origin
   Inherited changes of habit or instinct in domesticated animals
   Special instincts; Instincts of the cuckoo
   Slave-making instinct
   Cell-making instinct of the hive-bee
   Objections to the theory of natural selection as applied to instincts: neuter and sterile insects
   Summary
chapter ix. hybridism
   Distinction between the sterility of first crosses and of hybrids
   Degrees of sterility
   Laws governing the sterility of first crosses and of hybrids
   Origin and causes of the sterility of first crosses and of hybrids
   Reciprocal dimorphism and trimorphism
   Fertility of varieties when crossed and of their mongrel offspring not universal
   Hybrids and mongrels compared independently of their fertility
   Summary of Chapter
chapter x. on the imperfection of the geological record
   On the absence of intermediate varieties at the present day
   On the lapse of time, as inferred from the rate of denudation and of deposition
   On the poorness of our palaeontological collections
   On the absence of numerous intermediate varieties in any single formation
   On the sudden appearance of whole groups of allied species
   On the sudden appearance of groups of allied species in the lowest known fossiliferous strata
chapter xi. on the geological succession of organic beings
   On the slow and successive appearance of new species
   On extinction
   On the forms of life changing almost simultaneously throughout the world
   On the affinities of extinct species to each other and to living species
   On the state of development of ancient compared with living forms
   On the succession of the same types within the same areas, during the later Tertiary Periods.
   Summary of preceding and present chapter
chapter xii. geographical distribution
   Present distribution cannot be accounted for by differences in physical conditions
   Single centres of supposed creation
   Means of dispersal
   Dispersal during the Glacial period
   Alternate Glacial periods in the north and south
chapter xiii. geographical distribution -- continued
   Distribution of fresh-water productions
   On the inhabitants of oceanic islands
   Absence of Batrachians and terrestrial Mammals on oceanic islands
   On the relation of the inhabitants of islands to those of the nearest mainland
   Summary of the last and present chapter
chapter xiv. mutual affinities of organic beings: morphology -- embryology -- rudimentary organs
   Classification
   Analogical resemblances
   On the nature of the affinities connecting organic beings
   Morphology
   Development and embryology
   Rudimentary, atrophied, and aborted organs
   Summary
chapter xv
   Recapitulation and Conclusion
Glossary of Scientific Terms