您的位置 : 首页 > 英文著作
Origin of Species
chapter vi. difficulties of the theory   Absence or rarity of transitional varieties
Charles Darwin
下载:Origin of Species.txt
本书全文检索:
       As natural selection acts solely by the preservation of profitable modifications, each new form will tend in a fully-stocked country to take the place of, and finally to exterminate, its own less improved parent-form and other less-favoured forms with which it comes into competition. Thus extinction and natural selection go hand in hand. Hence, if we look at each species as descended from some unknown form, both the parent and all the transitional varieties will generally have been exterminated by the very process of the formation and perfection of the new form.
       But, as by this theory innumerable transitional forms must have existed, why do we not find them embedded in countless numbers in the crust of the earth? It will be more convenient to discuss this question in the chapter on the imperfection of the geological record; and I will here only state that I believe the answer mainly lies in the record being incomparably less perfect than is generally supposed. The crust of the earth is a vast museum; but the natural collections have been imperfectly made, and only at long intervals of time.
       But it may be urged that when several closely allied species inhabit the same territory, we surely ought to find at the present time many transitional forms. Let us take a simple case: in travelling from north to south over a continent, we generally meet at successive intervals with closely allied or representative species, evidently filling nearly the same place in the natural economy of the land. These representative species often meet and interlock; and as the one becomes rarer and rarer, the other becomes more and more frequent, till the one replaces the other. But if we compare these species where they intermingle, they are generally as absolutely distinct from each other in every detail of structure as are specimens taken from the metropolis inhabited by each. By my theory these allied species are descended from a common parent; and during the process of modification, each has become adapted to the conditions of life of its own region, and has supplanted and exterminated its original parent-form and all the transitional varieties between its past and present states. Hence we ought not to expect at the present time to meet with numerous transitional varieties in each region, though they must have existed there, and may be embedded there in a fossil condition. But in the intermediate region, having intermediate conditions of life, why do we not now find closely-linking intermediate varieties? This difficulty for a long time quite confounded me. But I think it can be in large part explained.
       In the first place we should be extremely cautious in inferring, because an area is now continuous, that it has been continuous during a long period. Geology would lead us to believe that most continents have been broken up into islands even during the later tertiary periods; and in such islands distinct species might have been separately formed without the possibility of intermediate varieties existing in the intermediate zones. By changes in the form of the land and of climate, marine areas now continuous must often have existed within recent times in a far less continuous and uniform condition than at present. But I will pass over this way of escaping from the difficulty; for I believe that many perfectly defined species have been formed on strictly continuous areas; though I do not doubt that the formerly broken condition of areas now continuous, has played an important part in the formation of new species, more especially with freely-crossing and wandering animals.
       In looking at species as they are now distributed over a wide area, we generally find them tolerably numerous over a large territory, then becoming somewhat abruptly rarer and rarer on the confines, and finally disappearing. Hence the neutral territory between two representative species is generally narrow in comparison with the territory proper to each. We see the same fact in ascending mountains, and sometimes it is quite remarkable how abruptly, as Alph. De Candolle has observed, a common alpine species disappears. The same fact has been noticed by E. Forbes in sounding the depths of the sea with the dredge. To those who look at climate and the physical conditions of life as the all-important elements of distribution, these facts ought to cause surprise, as climate and height or depth graduate away insensibly. But when we bear in mind that almost every species, even in its metropolis, would increase immensely in numbers, were it not for other competing species; that nearly all either prey on or serve as prey for others; in short, that each organic being is either directly or indirectly related in the most important manner to other organic beings--we see that the range of the inhabitants of any country by no means exclusively depends on insensibly changing physical conditions, but in large part on the presence of other species, on which it lives, or by which it is destroyed, or with which it comes into competition; and as these species are already defined objects, not blending one into another by insensible gradations, the range of any one species, depending as it does on the range of others, will tend to be sharply defined. Moreover, each species on the confines of its range, where it exists in lessened numbers, will, during fluctuations in the number of its enemies or of its prey, or in the nature of the seasons, be extremely liable to utter extermination; and thus its geographical range will come to be still more sharply defined.
       As allied or representative species, when inhabiting a continuous area, are generally distributed in such a manner that each has a wide range, with a comparatively narrow neutral territory between them, in which they become rather suddenly rarer and rarer; then, as varieties do not essentially differ from species, the same rule will probably apply to both; and if we take a varying species inhabiting a very large area, we shall have to adapt two varieties to two large areas, and a third variety to a narrow intermediate zone. The intermediate variety, consequently, will exist in lesser numbers from inhabiting a narrow and lesser area; and practically, as far as I can make out, this rule holds good with varieties in a state of nature. I have met with striking instances of the rule in the case of varieties intermediate between well-marked varieties in the genus Balanus. And it would appear from information given me by Mr. Watson, Dr. Asa Gray, and Mr. Wollaston, that generally, when varieties intermediate between two other forms occur, they are much rarer numerically than the forms which they connect. Now, if we may trust these facts and inferences, and conclude that varieties linking two other varieties together generally have existed in lesser numbers than the forms which they connect, then we can understand why intermediate varieties should not endure for very long periods: why, as a general rule, they should be exterminated and disappear, sooner than the forms which they originally linked together.
       For any form existing in lesser numbers would, as already remarked, run a greater chance of being exterminated than one existing in large numbers; and in this particular case the intermediate form would be eminently liable to the inroads of closely allied forms existing on both sides of it. But it is a far more important consideration, that during the process of further modification, by which two varieties are supposed to be converted and perfected into two distinct species, the two which exist in larger numbers, from inhabiting larger areas, will have a great advantage over the intermediate variety, which exists in smaller numbers in a narrow and intermediate zone. For forms existing in larger numbers will have a better chance, within any given period, of presenting further favourable variations for natural selection to seize on, than will the rarer forms which exist in lesser numbers. Hence, the more common forms, in the race for life, will tend to beat and supplant the less common forms, for these will be more slowly modified and improved. It is the same principle which, as I believe, accounts for the common species in each country, as shown in the second chapter, presenting on an average a greater number of well-marked varieties than do the rarer species. I may illustrate what I mean by supposing three varieties of sheep to be kept, one adapted to an extensive mountainous region; a second to a comparatively narrow, hilly tract; and a third to the wide plains at the base; and that the inhabitants are all trying with equal steadiness and skill to improve their stocks by selection; the chances in this case will be strongly in favour of the great holders on the mountains or on the plains improving their breeds more quickly than the small holders on the intermediate narrow, hilly tract; and consequently the improved mountain or plain breed will soon take the place of the less improved hill breed; and thus the two breeds, which originally existed in greater numbers, will come into close contact with each other, without the interposition of the supplanted, intermediate hill variety.
       To sum up, I believe that species come to be tolerably well-defined objects, and do not at any one period present an inextricable chaos of varying and intermediate links: first, because new varieties are very slowly formed, for variation is a slow process, and natural selection can do nothing until favourable individual differences or variations occur, and until a place in the natural polity of the country can be better filled by some modification of some one or more of its inhabitants. And such new places will depend on slow changes of climate, or on the occasional immigration of new inhabitants, and, probably, in a still more important degree, on some of the old inhabitants becoming slowly modified, with the new forms thus produced and the old ones acting and reacting on each other. So that, in any one region and at any one time, we ought to see only a few species presenting slight modifications of structure in some degree permanent; and this assuredly we do see.
       Secondly, areas now continuous must often have existed within the recent period as isolated portions, in which many forms, more especially among the classes which unite for each birth and wander much, may have separately been rendered sufficiently distinct to rank as representative species. In this case, intermediate varieties between the several representative species and their common parent, must formerly have existed within each isolated portion of the land, but these links during the process of natural selection will have been supplanted and exterminated, so that they will no longer be found in a living state.
       Thirdly, when two or more varieties have been formed in different portions of a strictly continuous area, intermediate varieties will, it is probable, at first have been formed in the intermediate zones, but they will generally have had a short duration. For these intermediate varieties will, from reasons already assigned (namely from what we know of the actual distribution of closely allied or representative species, and likewise of acknowledged varieties), exist in the intermediate zones in lesser numbers than the varieties which they tend to connect. From this cause alone the intermediate varieties will be liable to accidental extermination; and during the process of further modification through natural selection, they will almost certainly be beaten and supplanted by the forms which they connect; for these, from existing in greater numbers will, in the aggregate, present more varieties, and thus be further improved through natural selection and gain further advantages.
       Lastly, looking not to any one time, but at all time, if my theory be true, numberless intermediate varieties, linking closely together all the species of the same group, must assuredly have existed; but the very process of natural selection constantly tends, as has been so often remarked, to exterminate the parent forms and the intermediate links. Consequently evidence of their former existence could be found only among fossil remains, which are preserved, as we shall attempt to show in a future chapter, in an extremely imperfect and intermittent record.
用户中心

本站图书检索

本书目录

Introduction
chapter i. variation under domestication
   Causes of Variability
   Effects of Habit and the use or disuse of Parts; Correlated Variation; Inheritance
   Character of Domestic Varieties; Difficulty of distinguishing between Varieties and Species; Origin of Domestic Varieties from one or more Species
   Breeds of the Domestic Pigeon, Their Differences and Origin
   Principles of Selection, anciently followed, their Effects
   Unconscious Selection
   Circumstances favourable to Man's power of Selection
chapter ii. variation under nature
   Variability
   Individual Differences
   Doubtful species
   Wide ranging, much diffused, and common species, vary most
   Species of the larger genera in each country vary more frequently than the species of the smaller genera
   Many of the species of the larger genera resemble varieties in being very closely, but unequally, related to each other, and in having restricted ranges.
   Summary
chapter iii. struggle for existence
   Its bearing on natural selection
   The term, Struggle for Existence, used in a large sense
   Geometrical ratio of increase
   Nature of the checks to increase
   Complex relations of all animals and plants to each other in the struggle for existence
   Struggle for life most severe between individuals and varieties of the same species
chapter iv. natural selection; or the survival of the fittest
   Natural Selection
   Sexual Selection
   Illustrations of the action of Natural Selection, or the survival of the fittest
   On the Intercrossing of Individuals
   Circumstances favourable for the production of new forms through Natural Selection
   Extinction caused by Natural Selection
   Divergence of Character
   The Probable Effects of the Action of Natural Selection through Divergence of Character and Extinction, on the Descendants of a Common Ancestor
   On the degree to which Organisation tends to advance
   Convergence of character
   Summary
chapter v. laws of variation
   Effects of changed conditions
   Effects of the increased use and disuse of parts, as controlled by Natural Selection
   Acclimatisation
   Correlated variation
   Compensation and economy of growth
   Multiple, rudimentary, and lowly organised structures are variable
   A part developed in any species in an extraordinary degree or manner, in comparison with the same part in allied species, tends to be highly variable
   Specific characters more variable than generic characters
   Secondary sexual characters variable
   Distinct species present analogous variations, so that a variety of one species often assumes a character proper to an allied species, or reverts to some of the characters of an early progenitor
   Summary
chapter vi. difficulties of the theory
   Difficulties of the theory of descent with modification
   Absence or rarity of transitional varieties
   On the origin and transition of organic beings with peculiar habits and structure
   Organs of extreme perfection and complication
   Modes of transition
   Special difficulties of the theory of Natural Selection
   Organs of little apparent importance, as affected by Natural Selection
   Utilitarian doctrine, how far true: Beauty, how acquired
   Summary
chapter vii
   Miscellaneous Objections to the Theory of Natural Selection
chapter viii. instinct
   Instincts comparable with habits, but different in their origin
   Inherited changes of habit or instinct in domesticated animals
   Special instincts; Instincts of the cuckoo
   Slave-making instinct
   Cell-making instinct of the hive-bee
   Objections to the theory of natural selection as applied to instincts: neuter and sterile insects
   Summary
chapter ix. hybridism
   Distinction between the sterility of first crosses and of hybrids
   Degrees of sterility
   Laws governing the sterility of first crosses and of hybrids
   Origin and causes of the sterility of first crosses and of hybrids
   Reciprocal dimorphism and trimorphism
   Fertility of varieties when crossed and of their mongrel offspring not universal
   Hybrids and mongrels compared independently of their fertility
   Summary of Chapter
chapter x. on the imperfection of the geological record
   On the absence of intermediate varieties at the present day
   On the lapse of time, as inferred from the rate of denudation and of deposition
   On the poorness of our palaeontological collections
   On the absence of numerous intermediate varieties in any single formation
   On the sudden appearance of whole groups of allied species
   On the sudden appearance of groups of allied species in the lowest known fossiliferous strata
chapter xi. on the geological succession of organic beings
   On the slow and successive appearance of new species
   On extinction
   On the forms of life changing almost simultaneously throughout the world
   On the affinities of extinct species to each other and to living species
   On the state of development of ancient compared with living forms
   On the succession of the same types within the same areas, during the later Tertiary Periods.
   Summary of preceding and present chapter
chapter xii. geographical distribution
   Present distribution cannot be accounted for by differences in physical conditions
   Single centres of supposed creation
   Means of dispersal
   Dispersal during the Glacial period
   Alternate Glacial periods in the north and south
chapter xiii. geographical distribution -- continued
   Distribution of fresh-water productions
   On the inhabitants of oceanic islands
   Absence of Batrachians and terrestrial Mammals on oceanic islands
   On the relation of the inhabitants of islands to those of the nearest mainland
   Summary of the last and present chapter
chapter xiv. mutual affinities of organic beings: morphology -- embryology -- rudimentary organs
   Classification
   Analogical resemblances
   On the nature of the affinities connecting organic beings
   Morphology
   Development and embryology
   Rudimentary, atrophied, and aborted organs
   Summary
chapter xv
   Recapitulation and Conclusion
Glossary of Scientific Terms