您的位置 : 首页 > 英文著作
The Advance of Science in the Last Half-Century
Part 3
Thomas Henry Huxley
下载:The Advance of Science in the Last Half-Century.txt
本书全文检索:
       _ The greater number of the so-called 'elementary' bodies, now known, had been discovered before the commencement of our epoch; and it had become apparent that they were by no means equally similar or dissimilar, but that some of them, at any rate, constituted groups, the several members of which were as much like one another as they were unlike the rest. Chlorine, iodine, bromine, and fluorine thus formed a very distinct group; sulphur and selenium another; boron and silicon another; potassium, sodium, and lithium another; and so on. In some cases, the atomic weights of such allied bodies were nearly the same, or could be arranged in series, with like differences between the several terms. In fact, the elements afforded indications that they were susceptible of a classification in natural groups, such as those into which animals and plants fall.
       [Sidenote: fall into different series.]
       Recently this subject has been taken up afresh, with a result which may be stated roughly in the following terms: If the sixty-five or sixty-eight recognised 'elements' are arranged in the order of their atomic weights--from hydrogen, the lightest, as unity, to uranium, the heaviest, as 240--the series does not exhibit one continuous progressive modification in the physical and chemical characters of its several terms, but breaks up into a number of sections, in each of which the several terms present analogies with the corresponding terms of the other series.
       Thus the whole series does not run:
       _a, b, d, e, f, g, h, i, k,_ &c.,
       but
       _a, b, c, d_, A, B, C, D, alpha, beta, gamma, delta, &c.;
       so that it is said to express a _periodic law_ of recurrent similarities. Or the relation may be expressed in another way. In each section of the series, the atomic weight is greater than in the preceding section, so that if _w_ is the atomic weight of any element in the first segment, _w+x_ will represent the atomic weight of any element in the next, and _w+x+y_ the atomic weight of any element in the next, and so on. Therefore the sections may be represented as parallel series, the corresponding terms of which have analogous properties; each successive series starting with a body the atomic weight of which is greater than that of any in the preceding series, in the following fashion:
       

       _d_ D delta
       _c_ C gamma
       _b_ B beta
       _a_ A alpha
       - ----- ---------
       _w_ _w + x_ _w + x + y_
       

       [Sidenote: The possibility of a primary form of matter.]
       This is a conception with, which biologists are very familiar, animal and plant groups constantly appearing as series of parallel modifications of similar and yet different primary forms. In the living world, facts of this kind are now understood to mean evolution from a common prototype. It is difficult to imagine that in the not-living world they are devoid of significance. Is it not possible, nay probable that they may mean the evolution of our 'elements' from a primary undifferentiated form of matter? Fifty years ago, such a suggestion would have been scouted as a revival of the dreams of the alchemists. At present, it may be said to be the burning question of physico-chemical science.
       In fact, the so-called 'vortex-ring' hypothesis is a very serious and remarkable attempt to deal with material units from a point of view which is consistent with the doctrine of evolution. It supposes the ether to be a uniform substance, and that the 'elementary' units are, broadly speaking, permanent whirlpools, or vortices, of this ether, the properties of which depend on their actual and potential modes of motion. It is curious and highly interesting to remark that this hypothesis reminds us not only of the speculations of Descartes, but of those of Aristotle. The resemblance of the 'vortex-rings' to the 'tourbillons' of Descartes is little more than nominal; but the correspondence between the modern and the ancient notion of a distinction between primary and derivative matter is, to a certain extent, real. For this ethereal 'Urstoff' of the modern corresponds very closely with the prhote hyle of Aristotle, the _materia prima_ of his mediaeval followers; while matter, differentiated into our elements, is the equivalent of the first stage of progress towards the heschhate hyle, or finished matter, of the ancient philosophy.
       If the material units of the existing order of nature are specialised portions of a relatively homogeneous _materia prima_--which were originated under conditions that have long ceased to exist and which remain unchanged and unchangeable under all conditions, whether natural or artificial, hitherto known to us--it follows that the speculation that they may be indefinitely altered, or that new units may be generated under conditions yet to be discovered, is perfectly legitimate. Theoretically, at any rate, the transmutability of the elements is a verifiable scientific hypothesis; and such inquiries as those which have been set afoot, into the possible dissociative action of the great heat of the sun upon our elements, are not only legitimate, but are likely to yield results which, whether affirmative or negative, will be of great importance. The idea that atoms are absolutely ingenerable and immutable 'manufactured articles' stands on the same sort of foundation as the idea that biological species are 'manufactured articles' stood thirty years ago; and the supposed constancy of the elementary atoms, during the enormous lapse of time measured by the existence of our universe, is of no more weight against the possibility of change in them, in the infinity of antecedent time, than the constancy of species in Egypt, since the days of Rameses or Cheops, is evidence of their immutability during all past epochs of the earth's history. It seems safe to prophesy that the hypothesis of the evolution of the elements from a primitive matter will, in future, play no less a part in the history of science than the atomic hypothesis, which, to begin with, had no greater, if so great, an empirical foundation.
       [Sidenote: The old and the new atomic theory.]
       It may perhaps occur to the reader that the boasted progress of physical science does not come to much, if our present conceptions of the fundamental nature of matter are expressible in terms employed, more than two thousand years ago, by the old 'master of those that know.' Such a criticism, however, would involve forgetfulness of the fact, that the connotation of these terms, in the mind of the modern, is almost infinitely different from that which they possessed in the mind of the ancient, philosopher. In antiquity, they meant little more than vague speculation; at the present day, they indicate definite physical conceptions, susceptible of mathematical treatment, and giving rise to innumerable deductions, the value of which can be experimentally tested. The old notions produced little more than floods of dialectics; the new are powerful aids towards the increase of solid knowledge.
       [Sidenote: (2) Conservation of energy.]
       Everyday observation shows that, of the bodies which compose the material world, some are in motion and some are, or appear to be, at rest. Of the bodies in motion, some, like the sun and stars, exhibit a constant movement, regular in amount and direction, for which no external cause appears. Others, as stones and smoke, seem also to move of themselves when external impediments are taken away. But these appear to tend to move in opposite directions: the bodies we call heavy, such as stones, downwards, and the bodies we call light, at least such as smoke and steam, upwards. And, as we further notice that the earth, below our feet, is made up of heavy matter, while the air, above our heads, is extremely light matter, it is easy to regard this fact as evidence that the lower region is the place to which heavy things tend--their proper place, in short--while the upper region is the proper place of light things; and to generalise the facts observed by saying that bodies, which are free to move, tend towards their proper places. All these seem to be natural motions, dependent on the inherent faculties, or tendencies, of bodies themselves. But there are other motions which are artificial or violent, as when a stone is thrown from the hand, or is knocked by another stone in motion. In such cases as these, for example, when a stone is cast from the hand, the distance travelled by the stone appears to depend partly on its weight and partly upon the exertion of the thrower. So that, the weight of the stone remaining the same, it looks as if the motive power communicated to it were measured by the distance to which the stone travels--as if, in other words, the power needed to send it a hundred yards was twice as great as that needed to send it fifty yards. These, apparently obvious, conclusions from the everyday appearances of rest and motion fairly represent the state of opinion upon the subject which prevailed among the ancient Greeks, and remained dominant until the age of Galileo. The publication of the 'Principia' of Newton, in 1686-7, marks the epoch at which the progress of mechanical physics had effected a complete revolution of thought on these subjects. By this time, it had been made clear that the old generalisations were either incomplete or totally erroneous; that a body, once set in motion, will continue to move in a straight line for any conceivable time or distance, unless it is interfered with; that any change of motion is proportional to the 'force' which causes it, and takes place in the direction in which that 'force' is exerted; and that, when a body in motion acts as a cause of motion on another, the latter gains as much as the former loses, and _vice versa_. It is to be noted, however, that while, in contradistinction to the ancient idea of the inherent tendency to motion of bodies, the absence of any such spontaneous power of motion was accepted as a physical axiom by the moderns, the old conception virtually maintained itself is a new shape. For, in spite of Newton's well-known warning against the 'absurdity' of supposing that one body can act on another at a distance through a vacuum, the ultimate particles of matter were generally assumed to be the seats of perennial causes of motion termed 'attractive and repulsive forces,' in virtue of which, any two such particles, without any external impression of motion, or intermediate material agent, were supposed to tend to approach or remove from one another; and this view of the duality of the causes of motion is very widely held at the present day.
       Another important result of investigation, attained in the seventeenth century, was the proof and quantitative estimation of physical inertia. In the old philosophy, a curious conjunction of ethical and physical prejudices had led to the notion that there was something ethically bad and physically obstructive about matter. Aristotle attributes all irregularities and apparent dysteleologies in nature to the disobedience, or sluggish yielding, of matter to the shaping and guiding influence of those reasons and causes which were hypostatised in his ideal 'Forms.' In modern science, the conception of the inertia, or resistance to change, of matter is complex. In part, it contains a corollary from the law of causation: A body cannot change its state in respect of rest or motion without a sufficient cause. But, in part, it contains generalisations from experience. One of these is that there is no such sufficient cause resident in any body, and that therefore it will rest, or continue in motion, so long as no external cause of change acts upon it. The other is that the effect which the impact of a body in motion produces upon the body on which it impinges depends, other things being alike, on the relation of a certain quality of each which is called 'mass.' Given a cause of motion of a certain value, the amount of motion, measured by distance travelled in a certain time, which it will produce in a given quantity of matter, say a cubic inch, is not always the same, but depends on what that matter is--a cubic inch of iron will go faster than a cubic inch of gold. Hence, it appears, that since equal amounts of motion have, _ex hypothesi_, been produced, the amount of motion in a body does not depend on its speed alone, but on some property of the body. To this the name of 'mass' has been given. And since it seems reasonable to suppose that a large quantity of matter, moving slowly, possesses as much motion as a small quantity moving faster, 'mass' has been held to express 'quantity of matter.' It is further demonstrable that, at any given time and place, the relative mass of any two bodies is expressed by the ratio of their weights.
       [Sidenote: Mechanical theory of heat.]
       When all these great truths respecting molar motion, or the movements of visible and tangible masses, had been shown to hold good not only of terrestrial bodies, but of all those which constitute the visible universe, and the movements of the macrocosm had thus been expressed by a general mechanical theory, there remained a vast number of phenomena, such as those of light, heat, electricity, magnetism, and those of the physical and chemical changes, which do not involve molar motion. Newton's corpuscular theory of light was an attempt to deal with one great series of these phenomena on mechanical principles, and it maintained its ground until, at the beginning of the nineteenth century, the undulatory theory proved itself to be a much better working hypothesis. Heat, up to that time, and indeed much later, was regarded as an imponderable substance, _caloric_; as a thing which was absorbed by bodies when they were wanned, and was given out as they cooled; and which, moreover, was capable of entering into a sort of chemical combination with them, and so becoming latent. Rumford and Davy had given a great blow to this view of heat by proving that the quantity of heat which two portions of the same body could be made to give out, by rubbing them together, was practically illimitable. This result brought philosophers face to face with the contradiction of supposing that a finite body could contain an infinite quantity of another body; but it was not until 1843, that clear and unquestionable experimental proof was given of the fact that there is a definite relation between mechanical work and heat; that so much work always gives rise, under the same conditions, to so much heat, and so much heat to so much mechanical work. Thus originated the mechanical theory of heat, which became the starting-point of the modern doctrine of the conservation of energy. Molar motion had appeared to be destroyed by friction. It was proved that no destruction took place, but that an exact equivalent of the energy of the lost molar motion appears as that of the _molecular_ motion, or motion of the smallest particles of a body, which constitutes heat. The loss of the masses is the gain of their particles.
       [Sidenote: Earlier approaches towards doctrine of conservation.]
       Before 1843, however, the doctrine of conservation of energy had been approached Bacon's chief contribution to positive science is the happy guess (for the context shows that it was little more) that heat may be a mode of motion; Descartes affirmed the quantity of motion in the world to be constant; Newton nearly gave expression to the complete theorem; while Rumford's and Davy's experiments suggested, though they did not prove, the equivalency of mechanical and thermal energy. Again, the discovery of voltaic electricity, and the marvellous development of knowledge, in that field, effected by such men as Davy, Faraday, Oersted, Ampere, and Melloni, had brought to light a number of facts which tended to show that the so-called 'forces' at work in light, heat, electricity, and magnetism, in chemical and in mechanical operations, were intimately, and, in various cases, quantitatively related. It was demonstrated that any one could be obtained at the expense of any other; and apparatus was devised which exhibited the evolution of all these kinds of action from one source of energy. Hence the idea of the 'correlation of forces' which was the immediate forerunner of the doctrine of the conservation of energy.
       It is a remarkable evidence of the greatness of the progress in this direction which has been effected in our time, that even the second edition of the 'History of the Inductive Sciences,' which was published in 1846, contains no allusion either to the general view of the 'Correlation of Forces' published in England in 1842, or to the publication in 1843 of the first of the series of experiments by which the mechanical equivalent of heat was correctly ascertained.[I] Such a failure on the part of a contemporary, of great acquirements and remarkable intellectual powers, to read the signs of the times, is a lesson and a warning worthy of being deeply pondered by anyone who attempts to prognosticate the course of scientific progress.
       [FOOTNOTE I: This is the more curious, as Ampere's hypothesis that vibrations of molecules, causing and caused by vibrations of the ether, constitute heat, is discussed. See vol. ii. p. 587, 2nd ed. In the _Philosophy of the Inductive Sciences_, 2nd ed., 1847, p. 239, Whewell remarks, _a propos_ of Bacon's definition of heat, 'that it is an expansive, restrained motion, modified in certain ways, and exerted in the smaller particles of the body;' that 'although the exact nature of heat is still an obscure and controverted matter, the science of heat now consists of many important truths; and that to none of these truths is there any approximation in Bacon's essay.' In point of fact, Bacon's statement, however much open to criticism, does contain a distinct approximation to the most important of all the truths respecting heat which had been discovered when Whewell wrote.]
       [Sidenote: What this doctrine is.]
       I have pointed out that the growth of clear and definite views respecting the constitution of matter has led to the conclusion that, so far as natural agencies are concerned, it is ingenerable and indestructible. In so far as matter may be conceived to exist in a purely passive state, it is, imaginably, older than motion. But, as it must be assumed to be susceptible of motion, a particle of bare matter at rest must be endowed with the potentiality of motion. Such a particle, however, by the supposition, can have no energy, for there is no cause why it should move. Suppose now that it receives an impulse, it will begin to move with a velocity inversely proportional to its mass, on the one hand, and directly proportional to the strength of the impulse, on the other, and will possess _kinetic energy_, in virtue of which it will not only continue to move for ever if unimpeded, but if it impinges on another such particle, it will impart more or less of its motion, to the latter. Let it be conceived that the particle acquires a tendency to move, and that nevertheless it does not move. It is then in a condition totally different from that in which it was at first. A cause competent to produce motion is operating upon it, but, for some reason or other, is unable to give rise to motion. If the obstacle is removed, the energy which was there, but could not manifest itself, at once gives rise to motion. While the restraint lasts, the energy of the particle is merely potential; and the case supposed illustrates what is meant by _potential energy_. In this contrast of the potential with the actual, modern physics is turning to account the most familiar of Aristotelian distinctions--that between dunamis and energeia.
       That kinetic energy appears to be imparted by impact is a fact of daily and hourly experience: we see bodies set in motion by bodies, already in motion, which seem to come in contact with them. It is a truth which could have been learned by nothing but experience, and which cannot be explained, but must be taken as an ultimate fact about which, explicable or inexplicable, there can be no doubt. Strictly speaking, we have no direct apprehension of any other cause of motion. But experience furnishes innumerable examples of the production of kinetic energy in a body previously at rest, when no impact is discernible as the cause of that energy. In all such cases, the presence of a second body is a necessary condition; and the amount of kinetic energy, which its presence enables the first to gain, is strictly dependent on the relative positions of the two. Hence the phrase _energy of position_, which is frequently used as equivalent to potential energy. If a stone is picked up and held, say, six feet above the ground, it has _potential energy_, because, if let go, it will immediately begin to move towards the earth; and this energy may be said to be _energy of position_, because it depends upon the relative position of the earth and the stone. The stone is solicited to move but cannot, so long as the muscular strength of the holder prevents the solicitation from taking effect. The stone, therefore, has potential energy, which becomes kinetic if it is let go, and the amount of that kinetic energy which will be developed before it strikes the earth depends on its position--on the fact that it is, say, six feet off the earth, neither more nor less. Moreover, it can be proved that the raiser of the stone had to exert as much energy in order to place it in its position, as it will develop in falling. Hence the energy which was exerted, and apparently exhausted, in raising the stone, is potentially in the stone, in its raised position, and will manifest itself when the stone is set free. Thus the energy, withdrawn from the general stock to raise the stone, is returned when it falls, and there is no change in the total amount. Energy, as a whole, is conserved.
       Taking this as a very broad and general statement of the essential facts of the case, the raising of the stone is intelligible enough, as a case of the communication of motion from one body to another. But the potential energy of the raised stone is not so easily intelligible. To all appearance, there is nothing either pushing or pulling it towards the earth, or the earth towards it; and yet it is quite certain that the stone tends to move towards the earth and the earth towards the stone, in the way defined by the law of gravitation.
       In the currently accepted language of science, the cause of motion, in all such cases as this, when bodies tend to move towards or away from one or another, without any discernible impact of other bodies, is termed a 'force,' which is called 'attractive' in the one case, and 'repulsive' in the other. And such attractive or repulsive forces are often spoken of as if they were real things, capable of exerting a pull, or a push, upon the particles of matter concerned. Thus the potential energy of the stone is commonly said to be due to the 'force' of gravity which is continually operating upon it.
       Another illustration may make the case plainer. The bob of a pendulum swings first to one side and then to the other of the centre of the arc which it describes. Suppose it to have just reached the summit of its right-hand half-swing. It is said that the 'attractive forces' of the bob for the earth, and of the earth for the bob, set the former in motion; and as these 'forces' are continually in operation, they confer an accelerated velocity on the bob; until, when it reaches the centre of its swing, it is, so to speak, fully charged with kinetic energy. If, at this moment, the whole material universe, except the bob, were abolished, it would move for ever in the direction of a tangent to the middle of the arc described. As a matter of fact, it is compelled to travel through its left-hand half-swing, and thus virtually to go up hill. Consequently, the 'attractive forces' of the bob and the earth are now acting against it, and constitute a resistance which the charge of kinetic energy has to overcome. But, as this charge represents the operation of the attractive forces during the passage of the bob through the right-hand half-swing down to the centre of the arc, so it must needs be used up by the passage of the bob upwards from the centre of the arc to the summit of the left-hand half-swing. Hence, at this point, the bob comes to a momentary rest. The last fraction of kinetic energy is just neutralised by the action of the attractive forces, and the bob has only potential energy equal to that with which it started. So that the sum of the phenomena may be stated thus: At the summit of either half-arc of its swing, the bob has a certain amount of potential energy; as it descends it gradually exchanges this for kinetic energy, until at the centre it possesses an equivalent amount of kinetic energy; from this point onwards, it gradually loses kinetic energy as it ascends, until, at the summit of the other half-arc, it has acquired an exactly similar amount of potential energy. Thus, on the whole transaction, nothing is either lost or gained; the quantity of energy is always the same, but it passes from one form into the other.
       To all appearance, the phenomena exhibited by the pendulum are not to be accounted for by impact: in fact, it is usually assumed that corresponding phenomena would take place if the earth and the pendulum were situated in an absolute vacuum, and at any conceivable distance from, one another. If this be so, it follows that there must be two totally different kinds of causes of motion: the one impact--a _vera causa_, of which, to all appearance, we have constant experience; the other, attractive or repulsive 'force'--a metaphysical entity which is physically inconceivable. Newton expressly repudiated the notion of the existence of attractive forces, in the sense in which that term is ordinarily understood; and he refused to put forward any hypothesis as to the physical cause of the so-called 'attraction of gravitation.' As a general rule, his successors have been content to accept the doctrine of attractive and repulsive forces, without troubling themselves about the philosophical difficulties which it involves. But this has not always been the case; and the attempt of Le Sage, in the last century, to show that the phenomena of attraction and repulsion are susceptible of explanation by his hypothesis of bombardment by ultra-mundane particles, whether tenable or not, has the great merit of being an attempt to get rid of the dual conception of the causes of motion which has hitherto prevailed. On this hypothesis, the hammering of the ultra-mundane corpuscles on the bob confers its kinetic energy, on the one hand, and takes it away on the other; and the state of potential energy means the condition of the bob during the instant at which the energy, conferred by the hammering during the one half-arc, has just been exhausted by the hammering during the other half-arc. It seems safe to look forward to the time when the conception of attractive and repulsive forces, having served its purpose as a useful piece of scientific scaffolding, will be replaced by the deduction of the phenomena known as attraction and repulsion, from the general laws of motion.
       The doctrine of the conservation of energy which I have endeavored to illustrate is thus defined by the late Clerk Maxwell:
       'The total energy of any body or system of bodies is a quantity which can neither be increased nor diminished by any mutual action of such bodies, though it may be transformed into any one of the forms of which energy is susceptible.' It follows that energy, like matter, is indestructible and ingenerable in nature. The phenomenal world, so far as it is material, expresses the evolution and involution of energy, its passage from the kinetic to the potential condition and back again. Wherever motion of matter takes place, that motion is effected at the expense of part of the total store of energy.
       Hence, as the phenomena exhibited by living beings, in so far as they are material, are all molar or molecular motions, these are included under the general law. A living body is a machine by which energy is transformed in the same sense as a steam-engine is so, and all its movements, molar and molecular, are to be accounted for by the energy which is supplied to it. The phenomena of consciousness which arise, along with certain transformations of energy, cannot be interpolated in the series of these transformations, inasmuch as they are not motions to which the doctrine of the conservation of energy applies. And, for the same reason, they do not necessitate the using up of energy; a sensation has no mass and cannot be conceived to be susceptible of movement. That a particular molecular motion does give rise to a state of consciousness is experimentally certain; but the how and why of the process are just as inexplicable as in the case of the communication of kinetic energy by impact. _
用户中心

本站图书检索

本书目录